Hierarchical Active Transfer Learning
نویسندگان
چکیده
We describe a unified active transfer learning framework called Hierarchical Active Transfer Learning (HATL). HATL exploits cluster structure shared between different data domains to perform transfer learning by imputing labels for unlabeled target data and to generate effective label queries during active learning. The resulting framework is flexible enough to perform not only adaptive transfer learning and accelerated active learning but also unsupervised and semi-supervised transfer learning. We derive an intuitive and useful upper bound on HATL’s error when used to infer labels for unlabeled target points. We also present results on synthetic data that confirm both intuition and our analysis. Finally, we demonstrate HATL’s empirical effectiveness on a benchmark data set for sentiment classification.
منابع مشابه
Hierarchical Functional Concepts for Knowledge Transfer among Reinforcement Learning Agents
This article introduces the notions of functional space and concept as a way of knowledge representation and abstraction for Reinforcement Learning agents. These definitions are used as a tool of knowledge transfer among agents. The agents are assumed to be heterogeneous; they have different state spaces but share a same dynamic, reward and action space. In other words, the agents are assumed t...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملActive transfer learning for activity recognition
We examine activity recognition from accelerometers, which provides at least two major challenges for machine learning. Firstly, the deployment context is likely to differ from the learning context. Secondly, accurate labelling of training data is time-consuming and error-prone. This calls for a combination of active and transfer learning. We derive a hierarchical Bayesian model that is a natur...
متن کاملModeling Transfer Learning in Human Categorization with the Hierarchical Dirichlet Process
Transfer learning can be described as the distillation of abstract knowledge from one learning domain or task and the reuse of that knowledge in a related domain or task. In categorization settings, transfer learning is the modification by past experience of prior expectations about what types of categories are likely to exist in the world. While transfer learning is an important and active res...
متن کاملTesting the Structural Model of Job Characteristics, Organizational Climate and Extra-Organizational Factors on the Transfer of Education with the Role Mediation of Strategies Transfer
The purpose of this study was to investigate the role of job factors, constructive organizational climate and extra-organizational factors on the transfer of learning with the mediating role of learning transfer mechanisms on the consequences of learning. The research method was descriptive-survey and based on structural equations. The statistical population of the study included all managers, ...
متن کامل